G 717

(Pages: 3)

| Reg. | No |
|------|----|
| Name | e  |

# **B.TECH. DEGREE EXAMINATION, MAY 2014**

# Seventh Semester

Branch : Electronics and Communication Engineering EC 010 702—INFORMATION THEORY AND CODING (EC)

## (2010 Admissions)

[Improvement/Supplementary]

Time : Three Hours

Maximum: 100 Marks

#### Part A

Answer all questions. Each question carries 3 marks.

- 1. Define entropy. List its properties.
- 2. What are optimal codes ? Explain.

3. Sketch the channel transition diagram of a binary symmetric channel.

- 4. Make mod-2 multiplication and mod-5 addition table.
- 5. Explain the basic principle of LDPC codes.

 $(5 \times 3 = 15 \text{ marks})$ 

#### Part B

# Answer all questions. Each question carries 5 marks.

- 6. Define channel capacity. Express the channel capacity of a BSC channel and make a plot of it.
- 7. Explain the importance of Kraft's inequality in forming instantaneous codes.
- 8. State and explain Shannon-Hartely theorem.
- 9. Define vector space and subspace and list the conditions for a selected set of vectors to be a subspace.
- 10. Give the characteristics of Hamming codes. Explain with an example.

 $(5 \times 5 = 25 \text{ marks})$ 

#### Part C

## Answer all questions. Each question carries 12 marks.

11. (a) Define mutual information. List three properties and derive it.

Or

**Turn** over

(b) Determine different entropies of the joint probability matrix given below and verify various entropy relationships.

| X       | Y    |      | 330(030 |      |
|---------|------|------|---------|------|
| n Regin | 0.2  | 0    | 0.2     | 0    |
| 0 COT#  | 0.1  | 0.01 | 0.01    | 0.01 |
|         | 0    | 0.02 | 0.02    | 0    |
| P(X, Y) | 0.04 | 0.04 | 0.01    | 0.06 |
|         | 0    | 0.06 | 0.02    | 0.2  |

12. (a) The probability of occurrence of seven symbols is given by  $\frac{1}{15}$ ,  $\frac{1}{15}$ ,  $\frac{2}{15}$ ,  $\frac{2}{15}$ ,  $\frac{3}{15}$ ,  $\frac{3}{15}$  and  $\frac{3}{15}$  respectively. Encode this sequence using

- (i) Shannon-Fano algorithm.
- (ii) Huffman algorithm.

## Or

- (b) (i) Explain the steps involved in arithmetic coding.
  - (ii) In a text it was observed that the probability of occurrence of symbols  $\{a, b, c\}$  are  $\{0.4, 0.5, 0.1\}$ . Use arithmetic coding to encode the string 'bbbc'.
- 13. (a) (i) Derive the channel capacity of a binary noiseless symmetric channel.
  - (ii) Calculate the capacity of the discrete channel shown in figure below. Assume r = 1 symbol/second.



- (b) (i) A Gaussian channel has a bandwidth of 4 kHz and a two-sided noise power spectral density η/2 of 10<sup>-14</sup> watt/Hz. The signal power at the receiver has to be maintained at a level less than or equal to <sup>1 th</sup>/<sub>10</sub> of a milliwatt. Calculate the capacity of this channel.
  - (ii) A black and white TV picture can be viewed as consisting of approximately 3 × 10<sup>5</sup> elements, each one of which may occupy one of ten distinct brightness levels with equal probability. Assume rate of transmission as 30 picture frames per second and S/N ratio is 30 dB. Calculate the minimum bandwidth required to support this video signal, using channel capacity theorem.
- 14. (a) The parity part of a G-matrix for a (7, 4) linear block code is given below :

| [P] = | [1 | 1 | 0 ] |
|-------|----|---|-----|
|       | 0  | 1 | 1   |
|       | 1  | 1 | 1   |
|       | 1  | 0 | 1   |

- (i) Write G and H matrices.
- (ii) Draw the encoder logic diagram.
- (iii) Sketch the syndrome circuit and explain the decoding of the received vector of the input message 1011, if it is received with 5<sup>th</sup> bit in error.

Or

- (b) (i) Construct an extension field GF  $(2^4)$  of binary Galois field GF(2), using a primitive polynomial  $p(X) = 1 + X + X^4$ . Represent it in polynomial and 4-tuple formats.
  - (ii) If ' $\beta$ ' is a root of the polynomial f(x) over GF(2), show that, the conjugates of ' $\beta$ ' are also roots of the same polynomial.
- 15. (a) For a (7, 4) cyclic encoder, given that the generator polynomial  $g(X) = 1 + X + X^3$ :
  - (i) Illustrate the systematic code generation for the input polynomial  $u(X) = 1 + X^2 + X^3$ .
  - (ii) Sketch the decoder logic diagram.
  - (iii) Describe the decoding of the received codeword corresponding to the transmitted codeword in part (i), is received with 4<sup>th</sup> bit in error.

#### Or

(b) Sketch an encoder diagram of rate  $\frac{1}{3}$ , constraint length 3, systematic convolution

encoder with  $g^{(1)} = 101$ ,  $g^{(2)} = 110$  and  $g^{(3)} = 111$ .

- (i) Make a truth table, with present and next states.
- (ii) Sketch the tree diagram and state diagram of this encoder.
- (iii) Find the output of this encoder, for the input sequence 1010.

 $(5 \times 12 = 60 \text{ marks})$